小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=,sinA′=.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)
如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF. (1)求证:PA=PC. (2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD的面积.
已知:如图,在梯形ABCD中,AD∥BC,AC⊥BD,AC=5,BD=12,若E是BC上的一点,BE=6.5,求DE的长.
已知:如图,在梯形ABCD中,AD∥BC,E是AB的中点,CE的延长线与DA的延长线相交于点F. (1)求证:△BCE≌△AFE; (2)连接AC、FB,则AC与FB的数量关系是____,位置关系是____.
如图,在平行四边形ABCD中,E、F是对角线AC上不同两点,BE∥DF.求证:四边形BFDE是平行四边形.
已知:如图,在△ABC中,∠ACB=90°,点E为AB的中点,过点E作ED⊥BC于D,F在DE的延长线上,且AF=CE,若AB=6,AC=2,求四边形ACEF的面积.