小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=,sinA′=.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)
如图,小明站在离树20m的处测得树顶的仰角为,已知小明的眼睛(点)离地面约1.6m,求树的高度.(精确到0.1m)
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示. (1)画出△关于轴的对称图形△,并写出△各顶点的坐标. (2)把(1)中的△绕着点顺时针旋转得到△,在图中画出△,并回答△与△对应顶点的坐标有何关系
解方程时,有一位同学解答如下: ∵, ∴ ∴, 请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.
先化简,再求值: ,其中
计算: