以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经 X 表示. (Ⅰ)如果 X = 8 ,求乙组同学植树棵数的平均数和方差; (Ⅱ)如果 X = 9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差 s 2 = 1 n [ ( x 1 - x ) 2 + ( x 2 - x ) 2 + . . . + ( x n - x ) 2 ] ,其中 x 为 x 1 , x 2 , . . . x n 的平均数)
将等差数列{}:中所有能被3或5整除的数删去后,剩下的数自小到大排成一个数列{},求的值.
六个面分别写上1,2,3,4,5,6的正方体叫做骰子。问 1)共有多少种不同的骰子; 2)骰子相邻两个面上数字之差的绝对值叫做这两个面之间的变差,变差的总和叫做全变差V。在所有的骰子中,求V的最大值和最小值。
一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。问:(Ⅰ)某人在这项游戏中最多能过几关?(Ⅱ)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。抛掷骰子落地静止后,向上一面的点数为出现点数。)
将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球.设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法)
若函数f(x)=(a>0)在[1,+∞)上的最大值为,求a的值。