按要求证明下列各题.(Ⅰ)已知,用反证法证明中,至少有一个数大于25 (Ⅱ)已知是不相等的正数.用分析法证明.
已知:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:AE·BF·AB=CD3.
如图,在矩形ABCD中,AB>·AD,E为AD的中点,连结EC,作EF⊥EC,且EF交AB于F,连结FC.设=k,是否存在实数k,使△AEF、△ECF、△DCE与△BCF都相似?若存在,给出证明;若不存在,请说明理由.
已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB;(2)DE·DC=AE·BD.
如图,在△ABC中,作直线DN平行于中线AM,设这条直线交边AB于点D,交边CA的延长线于点E,交边BC于点N.求证:AD∶AB=AE∶AC.
如图,在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB边的中点,求证:ED=EC.