设函数,其中.⑴若的定义域为区间,求的最大值和最小值;⑵若的定义域为区间,求的取值范围,使在定义域内是单调减函数。
已知函数(Ⅰ)若试确定函数的单调区间;(Ⅱ)若,且对于任意,恒成立,求实数的取值范围;(Ⅲ)令若至少存在一个实数,使成立,求实数的取值范围.
已知是等差数列,其前项的和为,是等比数列,且,.(1)求数列和的通项公式;(2)记,,求数列的前项和.
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望; (Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由. 参考公式:. 参考数据:
在△ABC中,、、分别是角、、的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,求△ABC的面积.
已知函数是定义在R上的偶函数,且当时,.(1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间;(2)求出函数的解析式和值域.