有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲:
乙:
试分析两名学生的成绩水平.
(12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求二面角A-A1D-B的余弦值;(Ⅲ)求点C到平面A1BD的距离.
(12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.(Ⅰ)求证:命题“如果直线过点T(3,0),那么=3”是真命题;(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
(12分)如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(Ⅰ)求异面直线与所成角的余弦值;(Ⅱ)BE和平面所成角的正弦值.
(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.
(12分)已知命题p:不等式的解集为R,命题q:是R上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.