(本小题满分14分)在平面直角坐标系中,已知椭圆()的离心率为,其焦点在圆上.(1)求椭圆的方程;(2)设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使.(i)求证:直线与的斜率之积为定值;(ii)求.
.(本小题满分13分)以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足,.(Ⅰ)求椭圆及其“准圆”的方程;(Ⅱ)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于、两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.
.(本小题满分13分)已知数列是各项均不为的等差数列,公差为,为其前项和.向量、满足,.数列满足,为数列的前n项和.(Ⅰ)求、和;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分13分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(本小题满分13分)已知三棱锥,平面,,,.(Ⅰ)把△(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积;(Ⅱ)求二面角的余弦值.
(本小题满分14分)已知函数,其中常数.(Ⅰ)当时,求函数的极值点;(Ⅱ)令,若函数在区间上单调递增,求的取值范围;(Ⅲ)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“特殊点”,请你探究当时,函数是否存在“特殊点”,若存在,请最少求出一个“特殊点”的横坐标,若不存在,说明理由.