(本小题共12分)甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”。(1)求一个“单位射击组”为“单位进步组”的概率;(2)记完成三个“单位射击组”后出现“单位进步组”的次数,求的分布列与数学期望。
设函数是定义在上的增函数,是否存在这样的实数,使得不等式对于任意都成立?若存在,试求出实数的取值范围,若不存在,请说明理由.
已知定义域为R的函数是奇函数. ①求实数的值; ②用定义证明:在R上是减函数; ③解不等式:.
、两城相距100km,在两地之间 (直线AB上)距城km处的地建一核电站给、两城供电,为保证城市安全,核电站与城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数为0.3,若城供电量为20亿度/月,城为10亿度/月. (1)求月供电总费用表示成的函数; (2)核电站建在距A城多远,才能使供电费用最小?
解关于的不等式:.
记关于的不等式的解集为,不等式的解集为. (1)若,求; (2)若,求正数的取值范围.