已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分别是线段A1A,BC上的点. (1)若A1E=5,BF=10,求证:BE∥平面A1FD. (2)若BD⊥A1F,求三棱锥A1-AB1F的体积.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
已知,求
求圆心在直线上,且过两圆,交点的圆的方程.
某公交公司为了估计某线路公交公司发车的时间间隔,对乘客在这条线路上的某个公交车站等车的时间进行了调查,以下是在该站乘客候车时间的部分记录:
求(1); (2)画出频率分布直方图; (3)计算乘客平均等待时间的估计值。
(1)求三角函数cos(-)的值. (2)用三角函数线求函数y=的定义域. (3)求函数y=++的值域.