数列的前项和为,且(1)求,及;(2)证明:数列是等比数列,并求.
已知数列满足 (1)求的值; (2)是否存在一个实常数,使得数列为等差数列,请说明理由.
在中,角、B、C的对边分别为a,b,c,且, (1)求的值; (2)求的值.
已知函数 (1)求的值; (2)求的递减区间.
(本小题满分7分)选修4-5:不等式选讲 已知不等式的解集与关于的不等式的解集相等. (Ⅰ)求实数的值. (Ⅱ)求函数的最大值.
(本小题满分7分)选修4-4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为为参数),P、Q分别为直线与x轴、y轴的交点,线段PQ的中点为M. (Ⅰ)求直线的直角坐标方程; (Ⅱ)以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.