(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种曲线;(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合)试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
已知tanα=-. (1)求α的其它三角函数的值; (2)求的值.
两枚质量均匀的正方体骰子,六个面上分别标有数字1、2、3、4、5、6,抛掷两枚骰子.记两枚骰子朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标和纵坐标, (1)用列表法或树状图表示出点A(p,q)所有可能出现的结果; (2)求点A(p,q)在函数y=x-1的图象上的概率.
已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线L:x+y-1=0上,求圆心为C的圆的标准方程.
探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题. 函数f(x)=x+(x>0)在区间(0,2)上递减; (1)函数f(x)=x+(x>0)在区间上递增. 当x=时,y最小=. (2)证明:函数f(x)=x+在区间(0,2)上递减. (3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
已知函数 (1)判断的奇偶性; (2)确定函数在上是增函数还是减函数?证明你的结论.