设求证:
在中,角、、的对边分别为、、,且.(Ⅰ)求角的大小;(Ⅱ)求的取值范围.
由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料,算得,,, .(Ⅰ)求所支出的维修费对使用年限的线性回归方程;(Ⅱ)判断变量与之间是正相关还是负相关;(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.附:在线性回归方程中,,,其中,为样本平均值,线性回归方程也可写为.
已知等差数列满足:. (Ⅰ)求的通项公式及前项和;(Ⅱ)若等比数列的前项和为,且,求.
已知函数.(Ⅰ)若函数在上为增函数,求实数的取值范围;(Ⅱ)当且时,证明: .
已知椭圆:的左、右焦点分别为、,椭圆上的点满足,且△的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.