(本小题满分12分)如图(1)是一正方体的表面展开图,和是两条面对角线,请在图(2)的正方体中将和画出来,并就这个正方体解决下面问题.(Ⅰ)求证:平面;(Ⅱ)求证:⊥平面;(Ⅲ)求二面角的大小.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
已知函数. (1)求函数在点处的切线方程; (2)求函数的单调递减区间.
已知等差数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求数列的前项和.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.
已知命题p:方程有两个不相等的实根;Q:不等式的解集为R;若p或Q为真,p且Q为假,求实数M的取值范围.