已知函数在处取得极值.(1)求实数的值; (2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;(3)证明:对任意的正整数,不等式…都成立.
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x)万元,当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不少于80千件时,C(x)=51x+-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设.(1)求的值;(2)求的最小值.
如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.
(1);(2)计算.
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R}.若A∩B=[1,3],求实数m的值;