.已知:如图,梯形ABCD中,∥,,,,点E在BC边上,将△CDE沿DE折叠,点C恰好落在AB边上的点处.(1)求的度数;(2)求△的面积.
如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF. 求证:RT△BCE≌RT△DCF.
如图,公路上A、B两站相距25km,在公路AB附近有C、D两学校,DA⊥AB于点A,CB⊥AB于点B.已知DA=15km,CB=10km,现要在公路上建设一个青少年活动中心E,要使得C、D两学校到E的距离相等,则E应建在距A多远处?
如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=BE?并证明你的判断.
如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.