北京市顺义区初三一模数学试题
已知:如图,在矩形中,点在对角线上,以的长为半径的⊙与,分别交于点E、点F,且∠=∠.
(1)判断直线与⊙的位置关系,并证明你的结论;
(2)若,,求⊙的半径.
远洋电器城中,某品牌电视有四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是:2500,4000,6000,10000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电视共售出240台,每台的销售利润占其价格的百分比如下表:
型号 |
A |
B |
C |
D |
利润 |
10% |
12% |
15% |
20% |
请根据以上信息,解答下列问题:
(1)请补全统计图;
(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大;
(3)谈谈你的建议.
在边长为1的正方形网格中,正方形与正方形的位置如图所示.
(1)请你按下列要求画图:
① 联结交于点;
② 在上取一点,联结,,使△与△相似;
(2)若是线段上一点,连结并延长交四边形的一边于点,且满足,则的值为_____________.
已知抛物线:的顶点在坐标轴上.
(1)求的值;
(2)时,抛物线向下平移个单位后与抛物线:关于轴对称,且过点,求的函数关系式;
(3)时,抛物线的顶点为,且过点.问在直线上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.
已知:如图,正方形中,为对角线,将绕顶点逆时针旋转°(),旋转后角的两边分别交于点、点,交于点、点,联结.
(1)在的旋转过程中,的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);
(2)探究△与△的面积的数量关系,写出结论并加以证明.
已知二次函数的图象与轴交于点(,0)、点,与轴交于点.
(1)求点坐标;
(2)点从点出发以每秒1个单位的速度沿线段向点运动,到达点后停止运动,过点作交于点,将四边形沿翻 折,得到四边形,设点的运动时间为.
①当为何值时,点恰好落在二次函数图象的对称轴上;
②设四边形落在第一象限内的图形面积为,求关于的函数关系式,并求出的最大值.
据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元.
将82 000 000 000 用科学计数法表示为
A. | B. | C. | D. |
一个布袋中有1个红球,3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是
A. | B. | C. | D. |
如图,中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是
A.20 B.22 C.29 D.31
有20名同学参加“英语拼词”比赛,他们的成绩各不相同,按成绩取前10名参加复赛. 若小新知道了自己的成绩,则由其他19名同学的成绩得到的下列统计量中,可判断小新能否进入复赛的是
A.平均数 | B.极差 | C.中位数 | D.方差 |
如图,在中,∠C=90°,AB=5cm,BC=3cm,动点P从点A 出发,以每秒1cm的速度,沿ABC的方向运动,到达点C时停止.设,运动时间为t秒,则能反映y与t之间函数关系的大致图象是
如图,矩形纸片中,.第一次将纸片折叠,使点与点重合,折痕与交于点;设的中点为,第二次将纸片折叠使点与点重合,折痕与交于点;设的中点为,第三次将纸片折叠使点与点重合,折痕与交于点,… .按上述方法折叠,第n次折叠后的折痕与交于点,则=" " ,=" " .
如图,点C、D 在线段AB上,E、F在AB同侧,DE与CF相交于点O,且AC=BD, CO=DO,.求证:AE=BF.
如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.
(1)求k和b的值;
(2)结合图象直接写出不等式的解集.
.列方程或方程组解应用题:
“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见右表. 爸爸拿出自己的积分卡,对小华说:“这里积有8200 分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?
积分兑换礼品表 |
|
兑换礼品 |
积分 |
电茶壶一个 |
7000分 |
保温杯一个 |
2000分 |
牙膏一支 |
500分 |
某区在一次扶贫助残活动中,共捐款136 000元.将136 000元用科学记数法表示为
A.元 | B.元 | C.元 | D.元 |
某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6 , 10 , 5 , 3 , 4 , 8 , 4 ,这组数据的中位数和极差分别是
A.4, 7 | B.5, 7 | C.7, 5 | D.3, 7 |
如图,A、B是函数的图象上关于原点对称的任意两点,BC∥轴,AC∥轴,△ABC的面积记为,则
A. B. C. D.
将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.
列方程或方程组解应用题:
我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?
.已知:如图,梯形ABCD中,∥,,,,点E在BC边上,将△CDE沿DE折叠,点C恰好落在AB边上的点处.
(1)求的度数;
(2)求△的面积.
学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了右边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:
(1)该校学生报名总人数有多少人?
(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
(3)将两个统计图补充完整.
如图,将正方形沿图中虚线(其)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).
(1)画出拼成的矩形的简图;
(2)求的值.
已知:关于的一元二次方程
(1) 若方程有两个不相等的实数根,求的取值范围;
(2)求证:无论为何值,方程总有一个固定的根;
(3)若为整数,且方程的两个根均为正整数,求的值.
已知:如图,等边△ABC中,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
(1)猜想:线段AE、MD之间有怎样的数量关系,并加以证明;
(2)在(1)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,
求tan∠BCP的值.