已知函数f(x)=()x,函数y=f-1(x)是函数y=f(x)的反函数.(1)若函数y=f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由
政府决定用“对社会的有效贡献率”对企业进行评价,用表示某企业第n年投入的治理污染的环保费用,用表示该企业第n年的产值. 设(万元)且以后治理污染的环保费用每年比上一年增加2(万元);又设(万元),且企业的产值每年比上一年的平均增长率为10%. 用表示企业第n年 “对社会的有效贡献率”(Ⅰ)求该企业第一年和第二年的“对社会的有效贡献率”;(Ⅱ)已知1.13≈1.33,1.18≈2.14,试问:从第几年起该企业“对社会的有效贡献率”不低于20%?
如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,△ABF、△CDE是等边三角形,CD=1,EF=BC=1,EF//BC,M为EF的中点. (1)证明MO⊥平面ABCD (2)求二面角E—CD—A的余弦值 (3)求点A到平面CDE的距离
已知其中, 设函数 (Ⅰ)求函数的的值域;
20070126
(Ⅱ)若="8," 求函数的值.
已知定点A(a,O)( a >0),B为x轴负半轴上的动点.以AB为边作菱形ABCD,使其两对角线的交点恰好落在y轴上.(I)求动点D的轨迹E的方程;(Ⅱ)过点A作直线l与轨迹E交于P、Q两点,设点R (- a,0),问当l绕点A转动时,∠PRQ是否可以为钝角?请给出结论,并加以证明.
已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为 R(x)万元,且 (1)写出年利润W(万元)关于年产量x(千件)的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大? (注:年利润=年销售收入-年总成本)