从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望(2)若抽取后不放回,抽完红球所需次数为的分布列及期望。
(本小题满分12分)在中,角所对的边分别为,满足,且.(1)求角的大小;(2)求的最大值,并求取得最大值时角的值.
选修4-5:不等式选讲函数的最小值为M;(Ⅰ)求实数M的值;(Ⅱ)若不等式,(其中)恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(Ⅰ)写出曲线的普通方程;(Ⅱ)若直线与曲线相交于、两点,且,求的值.
选修4-2:矩阵与变换已知直线,若矩阵所对应的变换把直线变换为它自身。(Ⅰ)求矩阵A; (Ⅱ)求矩阵A的逆矩阵.
已知函数,.(Ⅰ)当时,试求的单调区间;(Ⅱ)若对任意的,方程恒有三个不等根,试求实数b的取值范围.