(本题12分)已知的角所对的边分别是,设向量,,.(I)若//,求证:为等腰三角形;(Ⅱ) 若⊥,边长,,求的面积 .
(本小题满分12分)已知函数以为切点的切线方程是.(Ⅰ)求实数,的值;(Ⅱ)求函数的单调区间;(Ⅲ)求函数切线倾斜角的取值范围.
(本小题满分12分)甲、乙两所学校的代表队参加汉字听写大赛.在比赛第二阶段,两队各剩最后两名队员上场.甲队两名队员通过第二阶段比赛的概率分别是和,乙队两名队员通过第二阶段比赛的概率都是.通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛人数为).所有参赛队员比赛互不影响,其过程、结果都是彼此独立的.(Ⅰ)求第三阶段比赛,甲、乙两队人数相等的概率;(Ⅱ)表示第三阶段比赛甲、乙两队的人数差的绝对值,求的分布列和数学期望.
(本小题满分12分)某军区新兵步枪射击个人平均成绩(单位:环)服从正态分布,从这些个人平均成绩中随机抽取个,得到如下频数分布表:
(Ⅰ)求和的值(用样本数学期望、方差代替总体数学期望、方差);(Ⅱ)如果这个军区有新兵名,试估计这个军区新兵步枪射击个人平均成绩在区间上的人数[参考数据:,若,则,,].
(本小题满分12分)下表是随机抽取的某市五个地段五种不同户型新电梯房面积(单位:十平方米)和相应的房价(单位:万元)统计表:
(Ⅰ)在给定的坐标系中画出散点图;(Ⅱ)求用最小二乘法得到的回归直线方程(参考公式和数据:,,);(Ⅲ)请估计该市一面积为的新电梯房的房价.
(本题12分)已知在区间[0,1]上是增函数,在区间上是减函数,又 (Ⅰ)求的解析式;(Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.