某工厂2010年第三季度生产的A,B,C,D四种型号的产品产量用条形图形表示如图,现用分层抽样的方法从中选取50件样品参加2011年4月份的一个展销会。(1)A,B,C,D型号的产品各抽取多少件?(2)从50件样品随机地抽取2件,求这2件产品恰好是不同型号产品的概率。(3)从A,C型号的样品中随机地抽取3件,用ξ表示抽取A型号的产品件数,求ξ的分布列和数学期望
(本小题满分13分)某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完.(I)求编号为奇数的小球放入到编号为奇数的盒子中的概率;(II)当一个小球放到其中一个盒子时,若球的编号与盒子的编号相同时,称该球是“放对”的,否则称该球是“放错”的,求至多有2个球“放对”的概率.
.(本小题满分12分)已知数列满足:,.(I)证明:;(II)证明:
.(本小题满分12分)已知抛物线的对称轴上一点,过点的直线交抛物线于、两点.(I)若抛物线上到点最近的点恰为抛物线的顶点,求的取值范围;(II)设直线的斜率为,直线的斜率为,若,求的值.
.(本小题满分12分)如图,已知斜三棱柱,,,在底面上的射影恰为的中点,又知.(I)求证:;(II)求到平面的距离;(III)求二面角.
.(本小题满分)已知函数的图象在点处的切线方程为(I)求出函数的表达式和切线的方程;(II)当时(其中),不等式恒成立,求实数的取值范围.