(本小题满分14分)已知函数的极值点为和.(Ⅰ)求实数,的值;(Ⅱ)试讨论方程根的个数;(Ⅲ)设,斜率为的直线与曲线交于两点,试比较与的大小,并给予证明.
已知函数,设数列满足,。求证:数列是等差数列;设…,求。
如图,在直三棱柱中,,,,,为侧棱上一点,且。求证:平面;求二面角的大小。
选修:不等式选讲已知函数(1)求不等式的解集;(2)若关于的不等式的解集非空,求实数的取值范围
选修:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,得曲线的极坐标方程为().(1)化曲线、的方程为普通方程,并说明它们分别表示什么曲线;(2)设曲线与轴的一个交点的坐标为经过点作曲线的切线,求切线的方程.
选修:几何证明选讲如图,是圆的直径,是弦,的平分线交圆于,,交延长线于点,交于,(1)求证:是圆的切线;(2)若,求的值。