(本小题满分10分)4-1(几何证明选讲)如图,已知BA是的直径,AD是O的切线,割线BD、BF分别交O于C、E,连结AE、CE。(Ⅰ)求证:C、E、F、D四点共圆;(Ⅱ)求证:
等差数列{}足:,,其中为数列{}前n项和.(1)求数列{}通项公式;(2)若,且,,成等比数列,求k值.
已知函数满足对任意实数都有成立,且当时,,.(1)求的值;(2)判断在上的单调性,并证明;(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。试证明:在处连续.
已知函数,.(1)若且,试讨论的单调性;(2)若对,总使得成立,求实数的取值范围.
设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.(1)若直线的斜率为,求证:;(2)设直线的斜率分别为,求的值.
在数列中,().(1)求的值;(2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.