围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数; ⑵写出f(x)的单调区间(不必证明)⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知数列的前n项和为,且,(n=1,2,3…)数列中,,点在直线上。 (Ⅰ)求数列和的通项公式; (Ⅱ)记,求满足的最大正整数n。
已知如图几何体,正方形和矩形所在平面互相垂直,,为的中点,。 (Ⅰ)求证: ; (Ⅱ)求二面角的大小
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间。
已知曲线的极坐标方程为,直线的参数方程是:. (Ⅰ)求曲线的直角坐标方程,直线的普通方程; (Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线曲线,求曲线上的点到直线距离的最小值.
已知函数。 (Ⅰ)求的最小正周期; (Ⅱ)把的图像向右平移个单位后,在是增函数,当最小时,求的值