围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数; ⑵写出f(x)的单调区间(不必证明)⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
有甲,乙两个盒子,甲盒中装有2个小球,乙盒中装有3个小球,每次随机选取一个盒子并从中取出一个小球 (1)当甲盒中的球被取完时,求乙盒中恰剩下1个球的概率; (2)当第一次取完一个盒子中的球时,另一个盒子恰剩下个球,求的分布列及期望。
已知函数, (1)求函数的最小正周期;(2)若,求函数的值域
已知函数 (1)如果函数的单调减区间为,求函数的解析式; (2)在(1)的条件下,求函数的图像过点的切线方程; (3)证明:对任意的,不等式恒成立,求实数的取值范围。
已知,点在函数的图象上,其中 (1)求; (2)证明数列是等比数列; (3)设,求及数列的通项
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点 (1)求双曲线的方程; (2)是否为定值,若为定值,求出该值;若不为定值,说明理由。