如图,已知三棱柱 ABC - A 1 B 1 C 1 ,平面 A A 1 C 1 C ⊥ 平面 ABC , ∠ ABC = 90 ° , ∠ BAC = 30 ° , A 1 A = A 1 C = AC , E , F 分别是 AC , A 1 B 1 的中点.
(1)证明: EF ⊥ BC ;
(2)求直线 EF 与平面 A 1 BC 所成角的余弦值.
(本题12分)已知集合。求:(1); (2)()(3)
有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表),其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比都相等,且满足a24=1,a42=,a43=,求:(1)公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+ann的值。
△ABC中,AB=,AC边上的中线BD=,cosB=,如图所示,求:sinA。
已知,平面上三个向量的模均为1,它们之间的夹角均为120°,求:(1)证明;(2),求k的取值范围。
已知数列{an}中,,求:(1)证明数列{bn}是等比数列;(2)求数列{an}的通项公式。