如图,已知点 F ( 1 , 0 ) 为抛物线 y 2 = 2 px ( p > 0 ) 的焦点,过点 F 的直线交抛物线于 A , B 两点,点 C 在抛物线上,使得 △ ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 右侧.记 △ AFG , △ CQG 的面积为 S 1 , S 2 .
(1)求 p 的值及抛物线的准线方程;
(2)求 S 1 S 2 的最小值及此时点 G 的坐标.
已知双曲线的左、右两个焦点为, ,动点P满 足|P|+| P|=4. (I)求动点P的轨迹E的方程; (1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O 上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.
某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加,且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的. (I)求甲、乙、丙三名学生参加五个社团的所有选法种数; (Ⅱ)求甲、乙、丙三人中至少有两人参加同一社团的概率; (Ⅲ)设随机变量为甲、乙、丙这三个学生参加A社团的人数,求的分布列与 数学期望.
正方体.ABCD- 的棱长为l,点F为的中点. (I)(I)证明:∥平面AFC;. (Ⅱ)求二面角B-AF-一-C的大小.
△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),,m⊥n, (I)求角B的大小; (Ⅱ)若,b=1,求c的值.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数. (Ⅰ)用表示xn+1; (Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式; (Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.