设等差数列 { a n } 的前 n 项和为 S n , a 3 = 4 , a 4 = S 3 ,数列 { b n } 满足:对每 n ∈ N * , S n + b n , S n + 1 + b n , S n + 2 + b n 成等比数列.
(1)求数列 { a n } , { b n } 的通项公式;
(2)记 C n = a n 2 b n , n ∈ N * , 证明: C 1 + C 2 + ⋯ + C n < 2 n , n ∈ N * .
(本小题满分12分) 求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).
已知点分别是椭圆长轴的左、右端点,点是椭圆的右焦点.点在椭圆上,且位于轴的上方,. (1)求点的坐标; (2)设椭圆长轴上的一点, 到直线的距离等于,求椭圆上的点到点的距离的最小值
在数列中,,当时,其前项和满足. (1)求; (2)设,求数列的前项和. (3)求;
已知函数满足且对于任意, 恒有成立. (1)求实数的值; (2)解不等式.
已知向量:a=(2sinx,2 sinx),b=(sinx,cosx).为常数) (1)若,求的最小正周期; (2)若在[上最大值与最小值之和为5,求t的值; (3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求.