设函数 f ( x ) = sin x , x ∈ R .
(1)已知 θ ∈ [ 0 , 2 π ) , 函数 f ( x + θ ) 是偶函数,求 θ 的值;
(2)求函数 y = [ f ( x + π 12 ) ] 2 + [ f ( x + π 4 ) ] 2 的值域.
数列的前项和记为,,.(1)求数列的通项公式;(2)等差数列的前项和有最大值,且,又、、成等比数列,求.
如图,四棱锥的底面是正方形,底面,,,点、分别为棱、的中点.(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积.
设关于的一元二次方程.(1)若是从、、、四个数中任取的一个数,是从、、三个数中任取的一个数,求上述方程有实根的概率;(2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
已知,,三点.(1)求向量和向量的坐标;(2)设,求的最小正周期;(3)求的单调递减区间.
已知函数,(,为自然对数的底数).(1)当时,求的单调区间;(2)对任意的,恒成立,求的最小值;(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.