某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(Ⅰ)工厂第几年开始获利?(Ⅱ)若干年后,该工厂有两种处理该设备的方案:①年平均获利最大时,以26万元出售该设备;②总纯收入获利最大时,以8万元出售该设备,问哪种方案对工厂合算?
已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13. (1)求an及Sn; (2)令bn=(n∈N*),求数列{bn}的前n项和Tn.
函数. (1)求函数f(x)的最小正周期; (2)在△ABC中,a,b,c分别为内角A,B,C的对边,且,求△ABC的面积的最大值.
定义在上的函数满足对任意都有. 且时,, (1)求证:为奇函数; (2)试问在上是否有最值?若有,求出最值;若无,说明理由; (3)若对任意恒成立,求实数的取值范围.
设为实数,函数. (1)若函数是偶函数,求实数的值; (2)若,求函数的最小值; (3)对于函数,在定义域内给定区间,如果存在,满足,则称函数是区间上的“平均值函数”,是它的一个“均值点”.如函数是上的平均值函数,就是它的均值点.现有函数是区间上的平均值函数,求实数的取值范围.
某村电费收取有以下两种方案供农户选择: 方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取. 方案二:不收管理费,每度0.58元. (1)求方案一收费元与用电量(度)间的函数关系; (2)老王家九月份按方案一交费35元,问老王家该月用电多少度? (3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?