数列 { a n } 中, a 1 = 2 , a n + 1 = a n + c n ( c 是常数, n = 1 , 2 , 3 . . . ),且 a 1 , a 2 , a 3 成公比不为1的等比数列. (I)求 c 的值; (II)求 { a n } 的通项公式.
如图,直四棱柱中,底面是的菱形,,,点在棱上,点是棱的中点; (I)若是的中点,求证:; (II)求出的长度,使得为直二面角。
设数列的前n项和为,且(I)求数列的通项公式; (II)设数列满足:,又,且数列的前n项和为,求证:。
已知的三内角A,B,C所对三边分别为a,b,c,且(I)求的值。(II)若的面积求a的值。
设为整数,集合中的数由小到大组成数列.(1)写出数列的前三项;(2)求.
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋. (1)求该人在4次投掷中恰有三次投入红袋的概率; (2)求该人两次投掷后得分的数学期望.