已知、分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦两端点与所成⊿的周长是.(Ⅰ).求椭圆C的标准方程.(Ⅱ)已知点,是椭圆C上不同的两点,线段的中点为.求直线的方程;(Ⅲ)若线段的垂直平分线与椭圆C交于点、,试问四点、、、是否在同一个圆上,若是,求出该圆的方程;若不是,请说明理由.
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=10,S6=72.若bn=an-30,求数列{bn}的前n项和的最小值.
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.(1)求数列{an}的通项公式;(2)设bn=log2|an|,Tn为数列的前n项和,求Tn.
已知数列{an}的前n项和为Sn,且a1=1,nan+1=(n+2)Sn (n∈N*).(1)求证:数列为等比数列;(2)求数列{an}的通项公式及前n项和Sn;(3)若数列{bn}满足:b1=,=(n∈N*),求数列{bn}的通项公式.
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.(1)求数列{an}的通项公式;(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
将函数f(x)=sinx·sin(x+2)·sin(x+3)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an} (n=1,2,3,…).(1)求数列{an}的通项公式;(2)设bn=sinansinan+1sinan+2,求证:bn=(n=1,2,3,…).