已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=10,S6=72.若bn=an-30,求数列{bn}的前n项和的最小值.
把边长为a的等边三角形铁皮如图(1)剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的底面为正三角形的直棱柱形容器(不计接缝)如图(2),设容器的高为x,容积为。(Ⅰ)写出函数的解析式,并求出函数的定义域;(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积。
已知数列的前项和为,且满足, (Ⅰ)求,, ,并猜想的表达式;(Ⅱ)用数学归纳法证明所得的结论。
如图,已知抛物线与直线的两个交点分别为A、B,点P在抛物线上从A向B运动(点P不同于点A、B),(Ⅰ)求由抛物线与直线所围成的图形面积;(Ⅱ)求使⊿PAB的面积为最大时P点的坐标。
若,试比较与的大小.
已知,设:函数在上单调递减,:不等式的解集为.如果和有且仅有一个正确,求的取值范围.