已知数列{an}的前n项和为Sn,且a1=1,nan+1=(n+2)Sn (n∈N*).(1)求证:数列为等比数列;(2)求数列{an}的通项公式及前n项和Sn;(3)若数列{bn}满足:b1=,=(n∈N*),求数列{bn}的通项公式.
(本小题满分12分) 设函数 (Ⅰ)当时,求函数的单调区间; (Ⅱ)若对任意恒成立,求实数的最小值; (Ⅲ)设是函数图象上任意不同两点,线段AB中点为C,直线AB的斜率为k.证明:.
(本小题满分12分)已知离心率为的椭圆与直线相交于两点(点在轴上方),且.点是椭圆上位于直线两侧的两个动点,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)求四边形面积的取值范围.
(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个. (Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率; (Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面. (Ⅰ)求证:; (Ⅱ)若二面角为,求的长.
(本小题满分12分) 已知函数(,)图象的相邻两对称轴间的距离为,若将函数的图象向左平移个单位后图象关于轴对称. (1)求使成立的的取值范围; (2)设,其中是的导函数,若,且,求的值.