已知椭圆,过点且离心率为.(1)求椭圆的方程;(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
设,解关于的不等式.
在直三棱柱中,,,异面直线与所成的角等于,设. (1)求的值; (2)求平面与平面所成的锐二面角的大小.
已知数列是公差不为零的等差数列,,且是和的等比中项. (1)求数列的通项公式; (2)设数列的前项和为,,试问当为何值时,最大?并求出的最大值.
已知,,分别是的三个内角,,所对的边,且. (1)求角的值; (2)若,的面积,求的值.
已知函数是偶函数. (1)求实数的值; (2)设函数,若函数与的图象有且只有一个公共点,求实数的取值范围.