如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线 于点,过点作圆的切线,切点为.
对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(2)设是定义在上的“局部奇函数”,求实数的取值范围.
设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?
设等差数列的公差为,且.若设是从开始的前项数列的和,即,,如此下去,其中数列是从第开始到第)项为止的数列的和,即.(1)若数列,试找出一组满足条件的,使得: ;(2)试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;(3)若等差数列中.试探索该数列中是否存在无穷整数数列,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.
已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次停止摸奖的概率;(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布律和数学期望.