如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
求经过极点O(0,0),A(6,),B(6,)三点的圆的极坐标方程.
将下列各极坐标方程化为直角坐标方程.(1)θ=(ρ∈R). (2)ρcos2=1.
已知y=f(x)的图象(如图1)经A=作用后变换为曲线C(如图2).(1)求矩阵A. (2)求矩阵A的特征值.
已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=.(1)求矩阵M.(2)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
对任意实数x,矩阵总存在特征向量,求m的取值范围.