在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题.(1)求证:;(2)求EF与所成的角的余弦;(3)求FH的长.
(本小题满分14分) 已知向量与互相垂直,其中. (1)求和的值; (2)若,求的值.
“矩阵与变换和坐标系与参数方程”模块 已知直线的极坐标方程为,圆的参数方程为为参数. (Ⅰ)求圆上的点到直线的距离的最小值; (Ⅱ)若过点的直线与圆交于、两点,且,求直线的斜率.
“数学史与不等式选讲”模块已知为正实数,且. (Ⅰ)证明:; (Ⅱ)求的最小值.
(本小题满分15分) 已知函数,. (Ⅰ)若,且函数存在单调递减区间,求实数的取值范围; (Ⅱ)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,试判断在点处的切线与在点处的切线是否平行,并给出证明.
(本题满分15分) 已知椭圆,抛物线,过椭圆右顶点的直线交抛物线于两点,射线分别与椭圆交于点,点为原点. (Ⅰ)求证:点在以为直径的圆的内部; (Ⅱ)记的面积分别为,问是否存在直线使若存在,求出直线的方程,若不存在,请说明理由.