在棱长为的正方体中,是线段的中点,.(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面;(Ⅲ) 求三棱锥的体积.
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,建一个桥墩的工程费用为256万元,距离为米的相邻两桥墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。(1)试写出关于的函数关系式; (2)当=640米时,需新建多少个桥墩才能使最小?
如图,在直三棱柱中,,分别是的中点,且. (1)求证:;(2)求证:平面平面.
设函数.(1)求的最小正周期. (2)若函数与的图像关于直线对称,求当时的最大值.
设数列的前n项和为,(1)求证:数列是等比数列;(2)若,是否存在q的某些取值,使数列中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由。(3)若,是否存在,使数列中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由。
(本小题共16分)已知.(1)若函数在区间上有极值,求实数的取值范围;(2)若关于的方程有实数解,求实数的取值范围;(3)当,时,求证:.