(本小题满分14分)已知为复数,和均为实数,其中是虚数单位.(Ⅰ)求复数;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.
设命题:方程表示的图象是双曲线;命题:,.求使“且”为真命题时,实数的取值范围.
已知椭圆.,分别为椭圆的左,右焦点,,分别为椭圆的左,右顶点.过右焦点且垂直于轴的直线与椭圆在第一象限的交点为. (1)求椭圆的标准方程; (2)直线与椭圆交于,两点, 直线与交于点.当直线变化时, 点是否恒在一条定直线上?若是,求此定直线方程;若不是,请说明理由.
已知函数(a∈R). (1)当时,求的极值; (2)当时,求单调区间; (3)若对任意及,恒有 成立,求实数m的取值范围.
设数列满足条件:,,,且数列是等差数列. (1)设,求数列的通项公式; (2)若, 求; (3)数列的最小项是第几项?并求出该项的值.
在边长为a的正方形ABCD中,分别为BC,CD的中点,、分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥,如图所示. (1)在三棱锥中,求证:; (2)求四棱锥的体积.