如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0. (1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.
(本小题满分15分)已知抛物线上的一点(m,1)到焦点的距离为.点是抛物线上任意一点(除去顶点),过点与的直线和抛物线交于点,过点与的直线和抛物线交于点.分别以点,为切点的抛物线的切线交于点P′. (I)求抛物线的方程; (II)求证:点P′在y轴上.
(本小题满分15分)已知函数且. (Ⅰ)试用含式子表示;(Ⅱ)求的单调区间;(Ⅲ)若,试求在区间上的最大值.
已知数列的前n项和为,对任意的,点,均在函数的图像上.(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值.
已知向量 ,,函数。(Ⅰ)求的最小正周期;(II)若,求的值域.
已知菱形的边长为2,对角线与交于点,且,为的中点.将此菱形沿对角线折成直二面角. (I)求证:; (II)求直线与面所成角的余弦值大小.