在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,已知向量 且. (I)若,求实数m的值。 (II)若,求△ABC面积的最大值.
((本小题满分14分) 已知函数. (1)求函数的单调递增区间; (2)若对任意,函数在上都有三个零点,求实数的取值范围.
((本小题满分14分) 已知等差数列的公差,它的前项和为,若,且,,成等比数列. (1)求数列的通项公式; (2)设数列的前项和为,求证:.
(本小题满分14分) 如图5所示,在三棱锥中,,平面平面,于点, ,,. (1)求三棱锥的体积; (2)证明△为直角三角形.
(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考 试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图4的频率分布直方图. (1)求图中实数的值; (2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数; (3)若从数学成绩在与两个分数段内的学 生中随机选取两名学生,求这两名学生的数学成绩之差 的绝对值不大于10的概率.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数. (1)求的值;(2)若,求的值.