已知函数 f x = A sin ω x + φ , x ∈ R (其中 A > 0 , ω > 0 , 0 < φ < π 2 )的周期为 π ,且图象上一个最低点为 M 2 π 3 , - 2 . (Ⅰ)求 f x 的解析式; (Ⅱ)当 x ∈ 0 , π 12 ,求 f x 的最值.
(本小题满分12分)如图,在直棱柱,,。(Ⅰ)证明:;(Ⅱ)求直线所成角的正弦值。
(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M.(1)求f(x)的解析式;(2)求函数y=f(x)+f的最大值及对应x的值.
集合A是由具备下列性质的函数组成的:(1)函数的定义域是; (2)函数的值域是;(3)函数在上是增函数.试分别探究下列两小题:(1)判断函数,及是否属于集合A?并证明.(2)对于(1)中你认为属于集合A的函数,不等式是否对于任意的总成立?若不成立,为什么?若成立,请证明你的结论.
为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车。已知每日来回趟数是每次拖挂车厢节数的一次函数,如果该列火车每次拖节车厢,每日能来回趟;如果每次拖节车厢,则每日能来回趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客人。(1)求出关于的函数;(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
已知函数(其中A>0, ω>0,0< <)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求f(x)的解析式;(2)当,求f(x)的值域.