如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限. (1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.①求证:直线AM与△ABE的外接圆相切;②求椭圆的标准方程;(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
已知函数(e为自然对数的底数). (1)设曲线处的切线为,若与点(1,0)的距离为,求a的值; (2)若对于任意实数恒成立,试确定的取值范围; (3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且 (1)求椭圆的标准方程; (2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
已知数列是首项和公比均为的等比数列,设. (1)求证数列是等差数列; (2)求数列的前n项和.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点. (1)若PA=PD,求证:平面平面PAD; (2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.
已知函数.. (1)设曲线处的切线为,点(1,0)到直线l的距离为,求a的值; (2)若对于任意实数恒成立,试确定的取值范围; (3)当是否存在实数处的切线与y轴垂直?若存在,求出的值;若不存在,请说明理由.