如图,已知椭圆=1(a>b>0)的离心率为,且过点A(0,1). (1)求椭圆的方程;(2)过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P.
(本小题满分14分)如图,四棱锥,⊥底面,,,,,分别是的中点. (1)证明:∥平面; (2)求直线与平面所成角的正弦值.
(本小题满分14分)在中, 分别是角的对边,且. (1)求的大小; (2)若,,求的面积.
设是椭圆:()的左、右焦点,过的直线与交于两点.若,,则椭圆的离心率为.
已知椭圆C:,⊙, 点,分别是椭圆的左顶点和左焦点,点不是上的点,点是上的动点. (1)若,是的切线,求椭圆的方程; (2)是否存在这样的椭圆,使得恒为常数?如果存在,求出这个数及的离心率;如果不存在,说明理由.
在如图所示的几何体中,是边长为2的正三角形,平面, 平面平面,,且 (1)若,求证:平面 (2)若二面角为60°,求的长.