(本小题满分14分)现有4名男生、2名女生站成一排照相.(1)两女生要在两端,有多少种不同的站法?(2)两名女生不相邻,有多少种不同的站法?(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
已知命题p:“”,命题q:“”若命题“p且q”是真命题,求实数a的取值范围.
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)
已知.(Ⅰ)时,求证在内是减函数;(Ⅱ)若在内有且只有一个极值点,求实数的取值范围.
已知等差数列,公差,前项和为,且满足,.(Ⅰ)求数列的通项公式及前项和(Ⅱ)设,若数列也是等差数列,试确定非零常数,并求数列的前 项和.
如图所示,已知圆的直径长度为4,点为线段上一点,且.点为圆上一点,且.点在圆所在平面上的射影为点,.(Ⅰ)求证:平面;(Ⅱ)求与平面所成的角的正弦值。