已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系.
在中,角、、的对边分别为、、, 且满足. (1)求角的大小; (2)当时,求的面积
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知函数, (Ⅰ)当时,求该函数的定义域和值域; (Ⅱ)如果在区间上恒成立,求实数的取值范围
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点. (Ⅰ)当∥平面时,确定点在棱上的位置; (Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
在中,分别为角所对的边,且, (Ⅰ)求角; (Ⅱ)若,,的周长为,求函数的取值范围.