(本小题满分14分)已知数列的前项和,且.(1)求数列{an}的通项公式;(2)令,是否存在(),使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
设各项均为正数的等比数列{an}中,a1+a3=10,a3+a5=40. 数列{bn}中,前n项和(1)求数列{an}与{bn}的通项公式;(2)若c1=1,cn+1=cn+,求数列的通项公式(3)是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(1)求第n年初M的价值an的表达式;(2)求数列的前n项和
(1)已知数列的前项和为,,,求(2)已知等差数列的前项和为,求数列的前2012项和
(1)在中,内角,,所对的边分别是,已知,,求(2)设的内角的对边分别为,且求边长与的面积
(1)解不等式-3<4x-4x2≤0(2)若不等式mx2+2mx-4<2x2+4x对任意x均成立,求实数m的取值范围