对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.(1)判断1是否为函数≤≤的“均值”,请说明理由;(2)若函数为常数)存在“均值”,求实数a的取值范围;(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
已知a=3,c=2,B=150°,求边b的长及S△.
在△ABC中,已知角A、B、C对应的边分别为a、b、c,.且 C=2A.cos A= (1)求cosC和cosB的值; (2)当时,求a、b、c的值.
在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度.
在中, ⑴ 已知: acosB="bcosA" ,试判断形状; ⑵求证:。
在△ABC中,a=3,c=3,A=300,则角C及b.