对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.(1)判断1是否为函数≤≤的“均值”,请说明理由;(2)若函数为常数)存在“均值”,求实数a的取值范围;(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
在△ABC中,内角A、B、C所对的边分别是a、b、c,已知c=2,C= (1)若△ABC的面积为,求a、b; (2)若sinB=2sinA,求△ABC的面积。
(本小题共12分) 设函数,方程有唯一解,其中实数为常数,, (1)求的表达式; (2)求的值; (3)若且,求证:
(本小题共12分) 设,点在轴的负半轴上,点在轴上,且. (1)当点在轴上运动时,求点的轨迹的方程; (2)若,是否存在垂直轴的直线被以为直径的圆截得的弦长恒为定值?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分) 设数列的各项均为正数,若对任意的正整数,都有成等差数列,且成等比数列. (Ⅰ)求证数列是等差数列; (Ⅱ)如果,求数列错误!不能通过编辑域代码创建对象。的前错误!不能通过编辑域代码创建对象。项和。
(本小题满分12分) 三人独立破译同一份密码.已知三人各自破译出密码的概率分别为错误!不能通过编辑域代码创建对象。且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.