对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.(1)判断1是否为函数≤≤的“均值”,请说明理由;(2)若函数为常数)存在“均值”,求实数a的取值范围;(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
分别写出下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:(1)p:是无理数,q: 大于是2(2)p:,q:(3)p: , q:
分别写出下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:(1)p:连续的三个整数的乘积能被2整除, q:连续的三个整数的乘积能被3整除.(2)p:对角线互相垂直的四边形是菱形, q:对角线互相平分的四边形是菱形.
分别指出下列复合命题的形式及构成它的简单命题:(1)3是质数或合数.(2)他是运动员兼教练员.(3)相似三角形不一定是全等三角形.
你能写出下列命题p的非(否定)吗?(1)p:100既能被4整除又能被5整除(2)p:三条直线两两相交(3)p:一元二次方程至多有两个解(4)p:
函数的定义域为集合,函数的定义域为集合. (1)判定函数的奇偶性,并说明理由. (2)问:是的什么条件(充分非必要条件 、必要非充分条件、充要条件、既非充分也非必要条件)? 并证明你的结论.