(本小题满分10分)在△ABC中,确A、B、C的对边分别为a、b、c,且a=,b2+c2-bc=3。(Ⅰ)求角A;(Ⅱ)设cosB=,求边c的大小。
(本小题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球 (Ⅰ)求取出的3个球中至少有一个红球的概率; (Ⅱ)求取出的3个球得分之和恰为1分的概率; (Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.
(本小题满分12分) 设ABC的内角A、B、C的对边分别为a、b、c,cos(A—C)+cos B=,b2=ac,求B.
(本小题满分14分) 已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,),过点P(2,1)的直线l与椭圆C在第一象限相切于点M. (1)求椭圆C的方程; (2)求直线l的方程以及点M的坐标; (3)是否存在过点P的直线l与椭圆C相交于不同的两点A,B,满足·=?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题满分14分) 已知函数f (x)=(2-a)(x-1)-2lnx,(a∈R,e为自然对数的底数) (1)当a=1时,求f (x)的单调区间; (2)若函数f (x)在(0,)上无零点,求a的最小值
(本小题满分13分) 已知菱形ABCD中,AB=4, (如图1所示),将菱形ABCD沿对角线翻折,使点翻折到点的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点. (1)证明:BD //平面; (2)证明: (3)当时,求线段AC1的长.