设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求·的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=. (1)求 f(x)在[-1,1]上的解析式; (2)证明: f(x)在(0,1)上是减函数.
已知sinα=,求tan(α+)+.
已知函数, (Ⅰ)若函数在上是减函数,求实数的取值范围; (Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由; (III)当时,证明:
已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上. (Ⅰ)求证:平面; (Ⅱ)若点D恰为BC中点,且,求的大小; (III)若,且当时,求二面角的大小.
选修4-5:不等式选讲 已知函数. (1)当时,求函数的定义域; (2)若关于的不等式的解集是,求的取值范围.