长方体的三条棱长为,且.若其对角线长为,全面积为,求出的值以及长方体的体积.
已知椭圆的方程为:,其焦点在轴上,离心率.(1)求该椭圆的标准方程;(2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值.(3)在(2)的条件下,问:是否存在两个定点,使得为定值?若存在,给出证明;若不存在,请说明理由.
如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且.(1)求证:对任意的,都有AC⊥BE;(2)若二面角C-AE-D的大小为,求的值
设,其中为正实数.(1)当时,求的极值点;(2)若为上的单调函数,求的取值范围.
如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点)。如图,若抛物线C2:与y轴的交点为B,且经过F1,F2两点。1.求抛物线C2的方程;2.设M,N为抛物线C2上的动点,过点N作抛物线C2的切线交椭圆C1于点P、Q两点,求△MPQ面积的最大值。