(本小题满分12分)已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设(I)求,求直线的斜率k的取值范围;(II)求证:直线MQ过定点。
(10分) 已知函数的定义域为,值域为[-5,4].求a和b.
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.求点P的坐标
已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于轴,垂足为B,OB的中点为M. (1)求抛物线方程; (2)过M作,垂足为N,求点N的坐标; (3)以M为圆心,MB为半径作圆M,当是轴上一动点时,讨论直线AK与圆M的位置关系.
双曲线(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥c.求双曲线的离心率e的取值范围
已知抛物线C: y=-x2+6, 点P(2, 4)、A、B在抛物线上, 且直线PA、PB的倾斜角互补. (Ⅰ)证明:直线AB的斜率为定值; (Ⅱ)当直线AB在y轴上的截距为正数时, 求△PAB面积的最大值及此时直线AB的方程.